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ABSTRACT 

In a recent publication “Reproduction Angular Error: An Improved Performance Metric for 

Illuminant Estimation”, British Machine Vision Conference (2014), it was argued that the  

commonly used Recovery angular error – the angle between the RGBs of the actual and 

estimated lights-  is flawed when it is viewed in concert with how the illuminant estimate is 

used. Almost always, we use the illuminant estimate to make an image reproduction where 

the colour bias due to illumination is removed or reduced. It was shown that, when a single 

algorithm was used to estimate the light for a fixed scene viewed under a range of 

illuminants and where similar reproductions were produced when the estimate was 

‘divided out’, the recovery angular error would, counterintuitively, vary widely. The 

Reproduction angular error introduced in that paper remedies this flaw by measuring the 

angle between a true white patch and the white that is reproduced when an illuminant 

estimate is made. In this paper we generalize the reproduction error concept to consider 

how well a range of colours are reproduced. We show how an illuminant estimate can be 

used to map the colours in a Macbeth colour checker for the actual illumination to 

reference lighting conditions. Then we evaluate the error of reproduction using the mean 

CIE Delta E. This new Generalised Reproduction error metric is used to compare the 

performance of a variety of different algorithms. Significantly, the rank-order of the 

reproduction angular error is quite similar to that established with the generalized 

reproduction error. Based on our experiments we propose that the simpler reproduction 

angular error can be used as a proxy to our generalised metric to assess the performance of 

illuminant estimation algorithms.  

1. INTORODUCTION 

The colours in an image captured by a digital camera are affected by the illuminant under 

which the scene is captured. Unlike human visual system which is able to perceive the 

colours constant regardless of illumination, the sensors of a camera capture a colour signal 

which is confounded by the illumination. To make the colours pleasant and usable by 

many computer vision tasks, the illuminant of the scene is estimated by reasoning about 

the distribution of colours in the image. In a second step, the colour of the illuminant is 

divided out from the colours of the image thereby removing the colour bias due to the 

illumination. 

Illuminant estimation algorithms range from simple statistics-based methods to 

algorithms that use more complex statistics to learning-based methods. The recovery error 

which is the angle between the estimated and the ground-truth illuminant is commonly 

used to evaluate the performance of an illuminant estimation algorithm. The average (mean 

or median) recovery error, for a set of training set of images, is used as an index to 

compare and rank different algorithms. 



 

 

However, in recent work (Finlayson & Zakizadeh 2014), a problem with the recovery 

error was identified. It was shown that the same scene viewed under two different colours 

of light where the same algorithm is used to estimate the illuminant can result in two very 

different angular errors. This is a problem because when each of the estimated lights are 

divided out from their respective images almost the same image reproduction results. 

Finlayson and Zakizadeh argued that the performance of illuminant estimation algorithms 

should be tied to how illuminant estimates are used. They are used to discount the colour 

bias die to illumination in making an image reproduction. Their new metric, called 

Reproduction Angular Error, measures the angle between the colour (RGB vector) of a 

white surface corrected using the estimated illuminant and the one corrected using the 

ground-truth illuminant (resulting in a true white patch). Significantly, this reproduction 

error provides a stable error for the same scene viewed under different lights and this gels 

with the fact that the corresponding reproductions look similar. Moreover, the new metric 

while broadly ranking algorithms the same as recovery angular error introduced several 

local changes in algorithm rank.  

In this paper, we seek to measure the difference between a range of colours (not just a 

white patch) which are reproduced by the estimated and ground-truth illuminants. This is 

not as easy as it first sounds as when image data sets are compiled we often have the image 

and the measured white point but not the appearance of the scene under a ground truth 

illuminant. In out approach we first show how to make a synthetic set of Macbeth colour 

checkers for different illuminants for a known camera. Second we show how to make 

reproductions of the Macbeth colour images when the illuminant colour is discounted 

using the illuminants estimated by different algorithms (for the algorithm estimates we use 

the data provided by Gijsenij et al. 2011). Then these reproductions are compared with the 

actual colours in a Macbeth checker for the reference lighting condition. The CIE Lab  ∆𝐸 

(Sharma et al. 2005) is used to measure the colour difference between the colours of the 

checker reproduced by the estimated lights and those under reference lighting condition. If 

the correct illuminant is estimated then a very small ∆𝐸 would result. Conversely, poor 

estimates result in large average ∆𝐸s.  

According to this new generalised reproduction error we can rank the performance of 

different algorithms. Crucially, we show that the ranking provided is almost the same as 

the recently introduced – and much simpler to calculate – reproduction angular error. This 

paper further validates the usefulness of the reproduction angular error metric. 

2. BACKGROUND 

The most commonly used metric for evaluating illuminant estimation algorithm is the 

recovery angular error: 

𝑒𝑟𝑟𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =  𝑐𝑜𝑠−1(
𝐸𝑒𝑠𝑡. 𝐸𝑎𝑐𝑡

|𝐸𝑒𝑠𝑡||𝐸𝑎𝑐𝑡|
)                (1) 

which is the angle between the estimated RGB of illuminant 𝐸𝑎𝑐𝑡 and the ground-truth 

RGB illuminant 𝐸𝑒𝑠𝑡. Recently, this recovery angular error was shown to have the problem 

of introducing a wide range of errors when a given algorithm estimates the illuminant for a 

given scene (Finlayson & Zakizadeh 2014) viewed under a wide range of illuminants. This 

behaviour is problematic because when the different illuminant estimates are ‘divided out’ 

similar reproductions result.  It is these reproduced images that are respectively assessed in 

photography or used in computer vision. To solve this problem, the Reproduction Angular 



 

 

Error was proposed The Reproduction angular error is defined to be the angle between the 

RGB of a white surface when the actual and the estimated illuminations are ‘divided out’.  

𝑒𝑟𝑟𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =  𝑐𝑜𝑠−1(
(𝐸𝑎𝑐𝑡/𝐸𝑎𝑐𝑡) ∗ (𝐸𝑎𝑐𝑡/𝐸𝑒𝑠𝑡)

√3|𝐸𝑎𝑐𝑡/𝐸𝑒𝑠𝑡|
)                (2) 

3. GENERALISED REPRODUCTION ERROR 

The Reproduction angular error assesses the performance of illuminant estimation 

algorithms according to how well white is reproduced when the colour bias due to 

illumination is removed. Here we wish to generalise this idea to consider how a range of 

colours are reproduced. Our idea is to provide a method for synthesising the RGB image of  

a Macbeth colour checker under an actual light and then use the RGB estimate of the 

illuminant – made by an algorithm – to correct the image colours (to remove the colour 

bias due to illumination). This corrected Macbeth checker is then compared with the actual 

reproduction (when the true illuminant is used).  

In constructing our model, we use the set of spectra for 24 Macbeth colour checker 

patches and the 23 lights from the SFU dataset (Barnard et al. 2002). For camera 

sensitivity functions we use the Sony DXC-930 CCD (Barnard et al. 2002) but the 

sensitivities of any particular camera can be used in the problem formulation. Equation (3) 

teaches that the camera response (𝜌𝑘) whose spectral sensitivities are denoted  𝑅𝑘(𝜆) for 

the surface spectra (𝑆(𝜆)) and the illuminant spectra (𝐸(𝜆)) is calculated as: 

𝜌𝑘 =  ∫ 𝑅𝑘(𝜆)𝑆(𝜆)𝐸(𝜆)𝑑𝜆
700

380

                (3) 

For all numerical calculations, we assume the visible spectrum runs from 380 to 780 

Nanometres and we use a 4 Nanometres sampling interval. For each of the 23 lights we, 

using (3), generate 24 RGBs. These 23 synthetic checker images encapsulate our 

understanding of how the checker appears under different lights. We wish to generalise this 

understanding so that we could, given the RGB of any target light, synthesise the 

appearance of the checker for any illuminant. Denoting the 24x3 RGBs for a Macbeth 

colour checker as M, we model M as a linear sum of three basis Macbeth colour checkers: 

𝑀 ≈ ∑ 𝑀𝑖𝑚𝑖

3

𝑖=1
                (4) 

In (4), 𝑚𝑖 denotes a scalar weight and the optimal basis in a least-squares sense are 

found using Characteristic Vector Analysis (Maloney 1986) (in this case of the 23 

synthetic Macbeth checker images). Crucially, we found the best basis models our data 

extremely well with the actual and 3-basis approximation being visually almost the same in 

appearance. 

We chose a 3-dimensional linear model because illumination is defined by 3 numbers: 

the RGB of the light or the RGB of the estimated light. Let us place the RGB for the white 

reflectance in the Macbeth checker for each basis term 𝑀𝑖 in the 3 columns of a calibration 

matrix 𝛺. Denoting an RGB of a light as 𝐸, the linear combination of the columns of 

𝛺 defines the weights 𝑚 used in Equation (4): 

𝑚 = 𝛺−1𝐸                  (5) 



 

 

In (5), the illuminant vector E could be the actual light or the estimate made by an 

algorithm. Figure 1a shows one input image and four synthetic checkers. The image is 

from the SFU (Barnard et al. 2002) database. For this scene a white patch was also 

measured. Algorithms such as pixel-based gamut mapping will attempt to infer an estimate 

which ideally will be close to the measured light.  

With the measured and actual RGBs of the light in hand, we generated from our linear 

model (4) and using (5) to find our model coefficient the appearance of the actual checker 

(Fig. 1b) and the one that pixel based gamut mapping infers (Fig. 1c). The third checker is 

the correct answer (Fig. 1d). The white patch is equal to [1,1,1]. All 3 images are scaled so 

that the brightest pixel value across all the colour channels is 1 and a gamma of .5 is 

applied. 

       

 

    

  

Figure 1: (a) Image from SFU dataset, (b) Synthetic colour checker under the ground truth 

light under which Fig. 1a was taken, (c) Synthetic colour checker under the estimation of 

the same ground truth light made by pixel-based gamut mapping algorithm, (d) Synthetic 

colour checker under the reference light and (e) Corrected colour checker by pixel-based 

gamut mapping algorithm. 

So far, we have focussed on explaining how we synthesise the colours of the Macbeth 

colour checker for a target light. But, we ultimately seek to model the appearance of a 

checker under an actual light when it is corrected to the reference checker (fig. 1d) using 

the wrong illuminant estimate.  

Denoting, respectively, the checker under the reference (white light), the actual coloured 

light and the estimated coloured light as 𝑀𝑟𝑒𝑓, 𝑀𝑎𝑐𝑡and 𝑀𝑒𝑠𝑡, the estimated reproduction, 

𝑀̃𝑟𝑒𝑓, is calculated as: 

𝑀̃𝑟𝑒𝑓 = 𝑀𝑎𝑐𝑡𝑇     ,      𝑇 = [𝑀𝑒𝑠𝑡]+𝑀𝑟𝑒𝑓       (6) 

In (6), [𝑀𝑒𝑠𝑡]+ denotes the Moore-Penrose inverse. That is, T is the least-squares fit 

from the checker viewed under the estimated light to the reference lighting conditions. This 

3x3 matrix T is then applied to the checker under the actual light.  

The Generalised Reproduction Error for the i
th

 Macbeth colour checker patch is:  

(e) 

(b) (c) 

(d) 

(a) 



 

 

𝑒𝑟𝑟𝑖 = ‖𝑓(𝑀̃𝑖
𝑟𝑒𝑓

) − 𝑓(𝑀𝑖
𝑟𝑒𝑓

)‖      (7) 

where 𝑓 maps an RGB to CIE LAB. Note the function 𝑓 must map the camera values to 

corresponding XYZs and then the standard CIE Lab formulae can be used. 

In Fig. 1e we show an actual checker under a coloured light corrected using the 

estimated light of pixel gamut mapping and the procedure described in (6). Note the 

reproduction is reasonable but there remains a slight yellowish cast.     

4. RESULTS  

Here we use the 321 images from the SFU dataset (Barnard et al. 2002). This data set has 

linear images and a variety of objects are imaged under 11 lights (ranging from quite 

yellowish to very blue). All images were captured with the SONY DXC-930. A variety of 

algorithms, including those listed in Table 1, were tested by Gijsenij et al. 2011 who makes 

all the estimated RGBs available to the community. We can thus calculate for all Macbeth 

colour checker images and the overall median generalised reproduction error. Then 

according to this global median we can rank the algorithms. 

In Table 1 we list the algorithms and record the rank for the Recovery and Reproduction 

angular errors and the new Generalised Reproduction error. 

Table 1. Comparison of ranking of algorithms based on reproduction angular errors and 

generalised reproduction errors. 

 
Recovery angular 

error 

Reproduction 

angular error 

Generalised 

Reproduction Error 

Method 
Median 

error 
Rank Median error Rank 

Median 

error 
Rank 

Grey-world 7.0° 9 7.49° 9 7.02 9 

MaxRGB 6.5° 8 7.44° 8 6.13 8 

Shades-of-gray  3.7° 7 3.94° 6 3.26 6 

1
st

 grey-edge  3.2° 5 3.59° 5 3.12 5 

2
nd

 grey-edge 2.7° 4 3.04° 4 2.88 4 

Pixel-based gamut  2.267° 2 2.83° 3 2.64 3 

Edge-based gamut  2.278° 3 2.70° 2 2.59 2 

Intersection-based 

gamut 
2.09° 

1 
2.48° 1 2.46 1 

Heavy tailed-based 3.45° 6 4.11° 7 3.74 7 

 



 

 

While the rankings of all three metrics are almost similar it is clear recovery angular 

error ranks algorithms a little differently from reproduction angular error. Further in 

(Finlayson & Zakizadeh 2014) it was shown that the rankings are statistically different. 

And, this fact draws attention to the care the algorithm designer needs to take using the 

appropriate metric to assess their algorithm. The reproduction angular error assesses how 

well an algorithm reproduces white (i.e. when the estimated illuminant is divided out). 

Generalised reproduction error builds on this concept and accounts for the error for other 

surface colours. The ranks for the generalised reproduction error are almost identical to the 

reproduction angular error. Indeed – space prohibits us elucidating on this point here – the 

rankings are not statistically significantly different. We can conclude, for the data tested, 

that the simple reproduction error can be used as a proxy for the generalised reproduction 

error developed here.  

5. CONCLUSION  

Reproduction angular error measures the angle between a true white patch and the white 

patch that results when an algorithm’s estimate is ‘divided out’ from the image. In this 

paper we generalised reproduction angular error to assess not only how white is 

reproduced but, instead, all the colours on a Macbeth colour checker. The generalised 

reproduction error is the CIE Lab colour difference of a reference checker and a 

reproduction that results when the same checker viewed under an actual coloured light is 

colour corrected using an estimate of that light supplied by an algorithm. Like the simple 

reproduction angular error the same algorithm/scene pair returns very similar error 

independent of the colour of the light to be estimated (because in all cases the resulting 

reproductions are similar). We observed that the ranking of a selection of algorithms based 

on the generalised reproduction error ∆Es are very similar to the ranks given by the simple 

reproduction angular metric. Thus, while the generalised reproduction error provides a 

finer grained summary of the ‘goodness’ of an illuminant estimation algorithm, the simpler 

reproduction angular error can be used to assess algorithm performance. 
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